学術論文 (Papers)

  • 2022 May. 27 Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans.,
    Shingo Hiroki, Hikari Yoshitane, Hinako Mitsui, Hirofumi Sato, Chie Umatani, Shinji Kanda, Yoshitaka Fukada, Yuichi Iino.,
    Nat Commun 13, 2928 (2022)
    DOI: 10.1038/s41467-022-30279-7
  • 2022 Apr. 04 Involvement of HECT-type E3 ubiquitin ligase genes in salt chemotaxis learning in Caenorhabditis elegans.,
    Yasuaki Ike, Masahiro Tomioka, Yuichi Iino.,
    Genetics, Volume 220, Issue 4, April 2022, iyac025
    DOI: 10.1093/genetics/iyac025
  • 2022 Mar. 12 Loss of calsyntenin paralogs disrupts interneuron stability and mouse behavior.,
    Keita Mori, Michinori Koebis, Kazuki Nakao, Shizuka Kobayashi, Yuji Kiyama, Masahiko Watanabe, Toshiya Manabe, Yuichi Iino, Atsu Aiba.,
    Mol Brain 15, 23 (2022). https://doi.org/10.1186/s13041-022-00909-8
    DOI: 10.1186/s13041-022-00909-8
  • 2022 Jan. 18 The redundancy and diversity between two novel PKC isotypes that regulate learning in C. elegans.,
    Shingo Hiroki, Yuichi Iino.,
    PNAS January 18, 2022 119 (3) e2106974119
    DOI: 10.1073/pnas.2106974119

  • 2022 Jan. 11 DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes.,
    Masahiro Tomioka, Moon Sun Jang, Yuichi Iino.,
    Communications Biology volume 5, Article number: 30 (2022)
    DOI: https://doi.org/10.1038/s42003-021-02956-8
  • 2021 Oct. 18 Probabilistic generative modeling and reinforcement learning extract the intrinsic features of animal behavior.,
    Keita Mori, Naohiro Yamauchi, Haoyu Wang, Ken Sato, Yu Toyoshima, Yuichi Iino.,
    Neural Networks. Volume 145
    DOI: 10.1016/J.NEUNET.2021.10.002
  • 2021 May. 25 Glutamate signaling from a single sensory neuron mediates experience-dependent bidirectional behavior in  C. elegans.,
    Hirofumi Sato, Hirofumi Kunitomo, Xianfeng Fei, Koichi Hashimoto, Yuichi Iino.,
    Cell Reports. Volume 35, Issue 8, 25 May 2021, 109177
    DOI: 10.1016/j.celrep.2021.109177
  • 2021 Jan. 27 Roles of the ClC chloride channel CLH-1 in food-associated salt chemotaxis behavior of C. elegans,
    Chanhyun Park, Yuki Sakurai , Hirofumi Sato , Shinji Kanda , Yuichi Iino, Hirofumi Kunitomo.,
    Elife. 2021 Jan 25;10:e55701
    DOI: 10.7554/eLife.55701
  • 2020 Mar. 19 Neuron ID dataset facilitates neuronal annotation for whole-brain activity imaging of C. elegans,
    Yu Toyoshima, Stephen Wu, Manami Kanamori, Hirofumi Sato, Moon Sun Jang, Suzu Oe, Yuko Murakami, Takayuki Teramoto, Chanhyun Park, Yuishi Iwasaki, Takeshi Ishihara, Ryo Yoshida, Yuichi Iino.,
    BMC Biology volume 18, Article number: 30 (2020)
    DOI: 10.1186/s12915-020-0745-2
  • 2019 Aug. 27 Multiple sensory neurons mediate starvation-dependent aversive navigation in Caenorhabditis elegans,
    Moon Sun Jang, Yu Toyoshima, Masahiro Tomioka, Hirofumi Kunitomo, Yuichi Iino.,
    PNAS September 10, 2019 116 (37) 18673-18683
    DOI: 10.1073/pnas.1821716116
  • 2019 Jul. 19 DAF-16/FOXO promotes taste avoidance learning independently of axonal insulin-like signaling,
    Takashi Nagashima, Masahiro Tomioka, Yuichi Iino.,
    PLoS Genet 15(7): e1008297
    DOI: 10.1371/journal.pgen.1008297
  • 2017 Dec. 11 SPF-CellTracker: tracking multiple cells with strongly-correlated moves using a spatial particle filter,
    Osamu Hirose, Shotaro Kawaguchi, Terumasa Tokunaga, Yu Toyoshima, Takayuki Teramoto, Sayuri Kuge, Takeshi Ishihara, Yuichi Iino, and Ryo Yoshida.,
    IEEE/ACM Transactions on Computational Biology and Bioinformatics
    DOI: 10.1109/TCBB.2017.2782255
  • 2017 May. 23 Modulation of sensory information processing by a neuroglobin in Caenorhabditis elegans,
    Shigekazu Oda, Yu Toyoshima, and Mario de Bono.,
    PNAS vol. 114 no. 23 E4658-E4665
    DOI: 10.1073/pnas.1614596114
  • 2017 Sep. 05 Dynamics of Presynaptic Diacylglycerol in a Sensory Neuron Encode Differences between Past and Current Stimulus Intensity,
    Hayao Ohno, Naoko Sakai, Takeshi Adachi, Yuichi Iino.,
    Cell Rep. Volume 20, Issue 10, 5 September 2017, Pages 2294–2303
    DOI: 10.1016/j.celrep.2017.08.038
  • 2017 Aug. 29 Luqin-like RYamide peptides regulate food-evoked responses in C. elegans,
    Hayao Ohno, Morikatsu Yoshida, Takahiro Sato, Johji Kato, Mikiya Miyazato, Masayasu Kojima, Takanori Ida, Yuichi Iino.,
    eLife 2017;6:e28877 DOI: 10.7554/eLife.28877
  • 2017 May. 25 The intestinal TORC2 signaling pathway contributes to associative learning in Caenorhabditis elegans,
    Naoko Sakai, Hayao Ohno, Masahiro Tomioka, Yuichi Iino.,
    PLoS ONE 12(5): e0177900.; DOI: 10.1371/journal.pone.0177900
  • 2017 Feb. 22 A Gustatory Neural Circuit of Caenorhabditis elegans Generates Memory-Dependent Behaviors in Na+ Chemotaxis,
    Lifang Wang, Hirofumi Sato, Yohsuke Satoh, Masahiro Tomioka, Hirofumi Kunitomo and Yuichi Iino.,
    J Neurosci. 2017, 37 (8) 2097-2111; DOI: 10.1523/JNEUROSCI.1774-16.2017.
  • 2016 Jun. 6 Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space,
    Yu Toyoshima, Terumasa Tokunaga, Osamu Hirose, Manami Kanamori, Takayuki Teramoto, Moon Sun Jang, Sayuri Kuge, Takeshi Ishihara, Ryo Yoshida, Yuichi Iino.,
    PLoS Comput Biol 12(6): e1004970. doi:10.1371/journal.pcbi.1004970.
  • 2016 May. 20 Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor,
    Masahiro Tomioka, Yasuki Naito, Hidehito Kuroyanagi & Yuichi Iino.,
    Nat. Commun. 7:11645 doi: 10.1038/ncomms11645 (2016).
  • 2016 Apr. 7 Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth,
    M. Endo, M. Hattori, H. Toriyabe, H. Ohno, H. Kamiguchi, Y. Iino & T. Ozawa.,
    Sci. Rep. 6, 23976; doi: 10.1038/srep23976 (2016).
  • 2015 Jun. 8 Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans.
    Yamazoe-Umemoto A, Fujita K, Iino Y, Iwasaki Y, Kimura KD.,
    Neurosci Res. 2015 Jun 8. pii: S0168-0102(15)00157-1.
  • 2015 Jan. 21 A role for Ras in inhibiting circular foraging behavior as revealed by a new method for time and cell-specific RNAi.,
    Hamakawa M, Uozumi T, Ueda N, Iino Y, Hirotsu T.,
    BMC Biol. 2015 Jan 21;13:6. doi: 10.1186/s12915-015-0114-8.
  • 2014 Nov. 19 Regulation of Experience-Dependent Bidirectional Chemotaxis by a Neural Circuit Switch in Caenorhabditis elegans.,
    Satoh Y, Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y.,
    J Neurosci. 34(47):15631-7.
  • 2014 Jul. 18 Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans.,
    Ohno H, Kato S, Naito Y, Kunitomo H, Tomioka M and Iino Y.,
    Science. Vol. 345 no. 6194 pp. 313-317.
  • 2014 Jun. 15 Automated detection and tracking of many cells by using 4D live-cell imaging data.,
    Tokunaga T, Hirose O, Kawaguchi S, Toyoshima Y, Teramoto T, Ikebata H, Kuge S, Ishihara T, Iino Y, Yoshida R.,
    Bioinformatics. 2014 Jun 15;30(12):i43-51.
  • 2013 Jul. 26 Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.,
    Kunitomo H, Sato H, Iwata R, Satoh Y, Ohno H, Yamada K, Iino Y.,
    Nat Commun. 4:2210. doi: 10.1038/ncomms3210.
  • 2013 Jul. 4 A sexually conditioned switch of chemosensory behavior in C. elegans.,
    Sakai N, Iwata R, Yokoi S, Butcher RA, Clardy J, Tomioka M, Iino Y.,
    PLoS One. 8(7):e68676.
  • 2012 Oct. 16 The temporal pattern of stimulation determines the extent and duration of MAPK activation in a Caenorhabditis elegans sensory neuron.,
    Tomida T, Oda S, Takekawa M, Iino Y, Saito H.,
    Sci Signal. 5(246):ra76.
  • 2012 Jul. 9 Temporally-regulated quick activation and inactivation of Ras is important for olfactory behaviour.,
    Uozumi T, Hirotsu T, Yoshida K, Yamada R, Suzuki A, Taniguchi G, Iino Y, Ishihara T.,
    Sci Rep. 2:500.
  • 2012 Jul. 1 Mutations in the pqe-1 gene enhance transgene expression in Caenorhabditis elegans.,
    Yamada K, Tsuchiya J, Iino Y.,
    G3 (Bethesda). (7):741-51.
  • 2012 Mar. 14 Identification of a novel ADAMTS9/GON-1 function for protein transport from the ER to the Golgi.,
    Yoshina S, Sakaki K, Yonezumi-Hayashi A, Gengyo-Ando K, Inoue H, Iino Y, Mitani S.,
    Mol Biol Cell. (9):1728-41.
  • 2012 Mar. 13 Odour concentration-dependent olfactory preference change in C. elegans.,
    Yoshida K, Hirotsu T, Tagawa T, Oda S, Wakabayashi T, Iino Y, Ishihara T.,
    Nat. Commun. 3:739. doi: 10.1038/ncomms1750.
  • 2011 Nov. 16 A seven-transmembrane receptor that mediates avoidance response to dihydrocaffeic acid, a water-soluble repellent in Caenorhabditis elegans.,
    Aoki R, Yagami T, Sasakura H, Ogura K, Kajihara Y, Ibi M, Miyamae T, Nakamura F, Asakura T, Kanai Y, Misu Y, Iino Y, Ezcurra M, Schafer WR, Mori I, Goshima Y.,
    J Neurosci. 31(46):16603-10.
  • 2011 Apr. 27 Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.,
    Oda S, Tomioka M, Iino Y.,
    J Neurophysiol. 106(1):301-8.
  • 2011 Apr. 18 Roles for class IIA phosphatidylinositol transfer protein in neurotransmission and behavioral plasticity at the sensory neuron synapses of Caenorhabditis elegans.,
    Iwata R, Oda S, Kunitomo H, Iino Y.,
    Proc. Natl. Acad. Sci. U S A. 108(18):7589-94.
  • 2011 Feb. 23 Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase, GCY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans.,
    Shinkai Y, Yamamoto Y, Fujiwara M, Tabata T, Murayama T, Hirotsu T, Ikeda DD, Tsunozaki M, Iino Y, Bargmann CI, Katsura I, Ishihara T.,
    J Neurosci. 31(8):3007-15.
  • 2010 Sep. 24 Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans.,
    Yamada K, Hirotsu T, Matsuki M, Butcher RA, Tomioka M, Ishihara T, Clardy J, Kunitomo H, Iino Y.,
    Science. 329(5999):1647-50.
  • 2010 Sep. 13 Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.,
    Adachi T, Kunitomo H, Tomioka M, Ohno H, Okochi Y, Mori I, Iino Y.,
    Genetics. 186(4):1309-19.
  • 2010 Aug. 20 Long-tail behavior in locomotion of Caenorhabditis elegans.,
    Ohkubo J, Yoshida K, Iino Y, Masuda N.,
    J Theor Biol.267(2):213-22.
  • 2010 Jun. 9 Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval.,
    Lin CH, Tomioka M, Pereira S, Sellings L, Iino Y, van der Kooy D.,
    J Neurosci. 30(23):8001-11.
  • 2010 Jun. 2 Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs).,
    Kimura Y, Kurabe N, Ikegami K, Tsutsumi K, Konishi Y, Kaplan OI, Kunitomo H, Iino Y, Blacque OE, Setou M.,
    J Biol Chem. 285(30):22936-41.
  • 2009 Oct. 29 Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.,
    Takayama J, Faumont S, Kunitomo H, Lockery SR, Iino Y.,
    Nucleic Acids Res. 38(1):131-42.
  • 2009 Jun. 28 A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans.,
    Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, Iino Y, Kubo T.,
    Nat Neurosci. (8):981-7.
  • 2009 Jun. 11 Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases.,
    Ortiz CO, Faumont S, Takayama J, Ahmed HK, Goldsmith AD, Pocock R, McCormick KE, Kunimoto H, Iino Y, Lockery S, Hobert O.,
    Curr Biol. 19(12):996-1004.
  • 2009 Apr. 29 Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.,
    Iino Y, Yoshida K.,
    J Neurosci. 29(17):5370-80.
  • 2009 Apr. GPC-1, a G protein gamma-subunit, regulates olfactory adaptation in Caenorhabditis elegans.,
    Yamada K, Hirotsu T, Matsuki M, Kunitomo H, Iino Y.,
    Genetics. 181(4):1347-57.
  • 2009 Jul. 8 Memory in Caenorhabditis elegans is mediated by NMDA-type ionotropic glutamate receptors.,
    Kano T, Brockie PJ, Sassa T, Fujimoto H, Kawahara Y, Iino Y, Mellem JE, Madsen DM, Hosono R, Maricq AV.,
    Anticancer Res.(2):517-24.
  • 2008 Apr. 1 CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans.,
    Ikeda DD, Duan Y, Matsuki M, Kunitomo H, Hutter H, Hedgecock EM, Iino Y.,
    Proc Natl Acad Sci U S A. 105(13):5260-5.
  • 2008 Jan. Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation.,
    Kunitomo H, Iino Y.,
    Genes Cells. 13(1):13-25.
  • 2006 Dec. 3 ASB-1, a germline-specific isoform of mitochondrial ATP synthase b subunit, is required to maintain the rate of germline development in Caenorhabditis elegans.,
    Kawasaki I, Hanazawa M, Gengyo-Ando K, Mitani S, Maruyama I, Iino Y.,
    Mech Dev. 124(3):237-51.
  • 2006 Nov. 1 Insulin-like signaling and the neural circuit for integrative behavior in C. elegans.,
    Kodama E, Kuhara A, Mohri-Shiomi A, Kimura KD, Okumura M, Tomioka M, Iino Y, Mori I.,
    Genes Dev. 20(21):2955-60.
  • 2006 Sep. 7 The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans.,
    Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y.,
    Neuron. 51(5):613-25.
  • 2006 Jan. 17 Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans.,
    Matsuki M, Kunitomo H, Iino Y.,
    Proc Natl Acad Sci U S A. 103(4):1112-7.
  • 2005 Sep. 6 MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans.,
    Kage E, Hayashi Y, Takeuchi H, Hirotsu T, Kunitomo H, Inoue T, Arai H, Iino Y, Kubo T.,
    Curr Biol. 15(17):1554-9.
  • 2005 Jun. Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway.,
    Hirotsu T, Iino Y.,
    Genes Cells. 10(6):517-30.
  • 2005 Jan. 31 Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails.,
    Kunitomo H, Uesugi H, Kohara Y, Iino Y.,
    Genome Biol. 6(2):R17.
  • 2004 Mar. The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is required for germ cell proliferation, gametogenesis and localization of the P-granule component PGL-1.,
    Hanazawa M, Kawasaki I, Kunitomo H, Gengyo-Ando K, Bennett KL, Mitani S, Iino Y.,
    Mech Dev. 121(3):213-24.
  • 2002 May. 31 HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans.,
    Ishihara T, Iino Y, Mohri A, Mori I, Gengyo-Ando K, Mitani S, Katsura I.,
    Cell. 109(5):639-49.
  • 2001 Jul. 17 Use of cDNA subtraction and RNA interference screens in combination reveals genes required for germ-line development in Caenorhabditis elegans.,
    Hanazawa M, Mochii M, Ueno N, Kohara Y, Iino Y.,
    Proc Natl Acad Sci U S A. 98(15):8686-91.
  • 2001 May. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans.,
    Saeki S, Yamamoto M, Iino Y.,
    J Exp Biol. 204(Pt 10):1757-64.
  • 2000 Mar. 16 The Ras-MAPK pathway is important for olfaction in Caenorhabditis elegans.,
    Hirotsu T, Saeki S, Yamamoto M, Iino Y.,
    Nature. 404(6775):289-93. Erratum in: Nature. 2004 Dec 2;432(7017):653.
  • 1999 Jun. kel-1, a novel Kelch-related gene in Caenorhabditis elegans, is expressed in pharyngeal gland cells and is required for the feeding process.,
    Ohmachi M, Sugimoto A, Iino Y, Yamamoto M.,
    Genes Cells. 4(6):325-37. Erratum in: Genes Cells 1999 Aug;4(8):487.
  • 1999 Jul. 1 A Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons.,
    Kawasaki M, Hisamoto N, Iino Y, Yamamoto M, Ninomiya-Tsuji J, Matsumoto K.,
    EMBO J. 18(13):3604-15.
  • 1998 Mar. Characterization of the C. elegans gap-2 gene encoding a novel Ras-GTPase activating protein and its possible role in larval development.,
    Hayashizaki S, Iino Y, Yamamoto M.,
    Genes Cells. 3(3):189-202.
  • 1998 Apr. 7 Expression pattern of the C. elegans P21-activated protein kinase, CePAK.,
    Iino Y, Yamamoto M.,
    Biochem Biophys Res Commun. 245(1):177-84.

Masahiro Tomioka